SMC标准气缸,SMC气动元件,SMC技术资料
上海乾拓贸易有限公司,SMC在的发展zui有实力的品牌,价格很有优势 货期很稳定 我们公司为您提供SMC标准气缸系列产品,本公司为您提供的!询价对比,新老客户的::转8005 转8007或者8008
SMC的标准是的,SMC()公司是气动中*家通过ISO14001环境管理体系认证的企业。曾经有人对赵彤说,如果将SMC产品的降低半、价格也降低半,其产品可能在目前更有市场。赵彤则将产品分为四类,即高质高价、高质、低质高价、低质,三种无疑会被淘汰,四种的市场空间留给其他竞争对手,高质是企业、用户永远追求的目标。
SMC的气动产品超过9100种基本系列,530000余种不同规格,主要包括气动洁净设备、电磁阀、各种气动压力、流量、方向控制阀、各种形式的气缸、摆缸、真空设备、气动仪表元件及设备,以及其他各种传感器与工业自动化元器件等。SMC()公司正在的5大系列气缸(日本制式、美国制式、欧洲制式)和全系列的气动三联件FRL产品均为2000年末、21世纪初设计的产品,具有*水平。
SMC标准气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。
SMC标准气缸采用的工作介质是通常认为不可压缩的液压油,其特点是动作不如气缸快,但速度易于控制,当载荷变化较大时,采用措施得当,般不会产生“爬行”和“自走”现象。把气缸与液压缸巧妙组合起来,取长补短,即成为气动系统中普遍采用的气-液阻尼缸。气-液阻尼缸工作原理见图42.2-5。实际是气缸与液压缸串联而成,两活塞固定在同活塞杆上。液压缸不用泵供油,只要充满油即可,其进出口间装有液压单向阀、节流阀及补油杯。当气缸右端供气时,气缸克服载荷带动液压缸活塞向左运动(气缸左端排气),此时液压缸左端排油,单向阀关闭,油只能通过节流阀流入液压缸右腔及油杯内,这时若将节流阀阀口开大,则液压缸左腔排油通畅,两活塞运动速度就快,反之,若将节流阀阀口关小,液压缸左腔排油受阻,两活塞运动速度会减慢。这样,调节节流阀开口大小,就能控制活塞的运动速度。可以看出,气液阻尼缸的输出力应是气缸中压缩空气产生的力(推力或拉力)与液压缸中油的阻尼力之差。 图42.2-5 气-液阻尼缸节流阀;2—油杯;3—单向阀;4—液压缸;5—气缸;6—外载荷 气-液阻尼缸的类型有多种。按气缸与液压缸的连接形式,可分为串联型与并联型两种。前面所述为串联型,图42.2-6为并联型气-液阻尼缸。串联型缸体较长;加工与安装时对同轴度要求较高;有时两缸间会产生窜气窜油现象。
SMC标准气缸壁上开孔、开沟槽、缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。活塞上有挡板式单向阀的气-液阻尼缸见图42.2-7。活塞上带有挡板式单向阀,活塞向右运动时,挡板离开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。活塞向左运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流右腔(经缸外管路)。调节节流阀的开度即可调节活塞慢进的速度。其结构较为简单,制造加工较方便。 图42.2-8为采用机械浮动联接的快速趋近式气-液阻尼缸原理图。靠液压缸活塞杆端部的T形顶块与气缸活塞杆端部的拉钩间有空行程s1,实现空程快速趋近,然后再带动液压缸活塞,通过节流阻尼,实现慢进。返程时也是走空行程s1,再与液压活塞起运动,通过单向阀,实现快退。 表42.2-3 气-液阻尼缸调速特性及应用调速方式 结构示意图 特性曲线 作用原理 应用 双向节流调速 在气-液阻尼缸的回油管路装设可调式节流阀,使活塞往复运动的速度可调并相同 适用于空行程及工作行程都较短的场合(s<20mm) 单向节流调速 将单向阀和节流阀并联在调速油路中。
SMC标准气缸的ƒ点与α点用管路相通,活塞开始向右运动时,右腔油经由fgea回路直接流入α端实现快速趋近,当活塞移过ƒ点,油只能经节流阀流入α端,实现慢进,活塞向左运动时,单向阀打开,实现快退。 由于快速趋近,节省了空程时间,提高了劳动率。是各种机床、设备zui常用的方式 活塞上有挡板式单向阀的气-液阻尼缸图42.2-8 浮动联接气-液阻尼缸原理图1—气缸;2—顶丝;3—T形顶块;4—拉钩;5—液压缸 图42.2-9 是又种浮动联接气-液阻尼缸。与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。后者设置在气缸活塞杆内,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。 特殊气缸冲击气缸 图42.2-9 浮动联接气-液阻尼缸 冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做功。
SMC标准气缸腔内压力能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。如此便出现活塞在缸体内来回往复运动—即弹跳。直活塞两侧压力差克服不了活塞阻力不能再发生弹跳为止。待有杆腔气体由A排空后,活塞便下行终点。
五阶段:耗能段。活塞下行终点后,如换向阀不及时复位,则蓄气-无杆腔内会继续充气直达到气源压力。再复位时,充入的这部分气体又需全部排掉。可见这种充气不能作用有功,故称之为耗能段。实际使用时应避免此段(令换向阀及时换向返回复位段)。
对内径D=90mm的气缸,在气源压力0.65MPa下进行实验,所得冲击气缸特性曲线见图42.2-12。上述分析基本与特性曲线相符。
对冲击段的分析可以看出,很大的运动加速使活塞产生很大的运动速度,但由于必须克服有杆腔不断增加的背压力及摩擦力,则活塞速度又要减慢,因此,在某个冲程处,运动速度必达zui大值,此时的冲击能也达zui大值。各种冲击作业应在这个冲程附近进行。
冲击气缸在实际工作时,锤头模具撞击工件作完功,般就借助行程开关发出信号使换向阀复位换向,缸即从冲击段直接转为复位段。这种状态可认为不存在弹跳段和耗能段。
©2024 上海乾拓贸易有限公司 版权所有 备案号: sitemap.xml 总访问量:2689594